- (24) Dvorak, K.; Boublik, T. Collect. Czech. Chem. Commun. 1963, 28, 1249
- (25) Boublik, T.; Benson, G. C. *Can. J. Chem.* **1969**, *47*, 539.
 (26) Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G. *Molecular Thermodynamics of Fluid Phase Equilibria*, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, 1986.
- (27) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975. 14. 209.
- (28) Johnson, A. I.; Furter, W. F. Can. J. Chem. Eng. 1965, 43, 356.
- (29) Chu, J. C. Distillation Equilibrium Data; Van Nostrand Reinhold: New York, 1950.
- (30) Murti, P.; Van Winkle, M. Ind. Eng. Chem. 1958, 50, 72DS.
- (31) Sada, E.; Morisue, T.; Yamaji, H. Can. J. Chem. Eng. 1975, 53, 350.

Received for review July 8, 1988. Revised December 20, 1989. Accepted May 15, 1990.

Dissociation Constants of Primary Phosphate Ion for pH Control in 20 and 50 Mass % 1-Propanol/Water Solvents from 37 to -10 °C

Carmen A. Vega* and Maria José Crespo

Department of Chemistry, University of Puerto Rico, Mayaguez, Puerto Rico 00708

Earlier work leading to the standard potential of the Ag/AgCl electrode in 20 and 50 mass % 1-propanol/water solvents at temperatures ranging from 37 to -10 °C has been extended to study the dissociation constants of the primary phosphate ion (H₂PO₄⁻) in the same media at this temperature range. Cells without liquid junction, Pt;H₂(g, 1 atm)|KH₂PO₄, Na₂HPO₄, NaCi|AgCi;Ag, were used to determine the dissociation constants of H₂PO₄⁻ in these 1-propanol/water media. Buffer solutions composed of KH₂PO₄ and Na₂HPO₄ were prepared in the motality scale (m) and are recommended as standards for pH measurements.

Introduction

The standard potential for the Ag/AgCl electrode in 20 and 50 mass % 1-propanol/water solvents from a wide range of temperatures has been used to study phosphate buffer solutions in the same media at temperatures ranging from 37 to -10 °C. Cells without liquid junction

Pt;H₂(g, 1 atm)|KH₂PO₄,Na₂HPO₄,NaCl|AgCl;Ag

were used to determine the dissociation constants of H₂PO₄⁻ (second acid dissociation constants of H_3PO_4) in 20 and 50 mass % 1-propanol/water media. Over the same temperature range, the thermodynamic quantities for the dissociation process can be derived easily.

The standard potential for the Ag/AgCl electrode in 1propanol/water solvents has been determined by several authors (1-4). The values used in this investigation were those of Elsemonghy and Fonda (4). Some of the needed values were extrapolated or interpolated when necessary. The E_m values used are tabulated in Table I. The measurements were made (\pm 0.05 mV) with a Fluke Model 8000A potentiometer. The temperature measurements were made in a thermostated bath to ± 0.05 °C precision. We have now investigated the second dissociation of H₃PO₄ in 20 and 50 mass % below 0 °C. These solutions are useful as reference standards for pH measurements and control in processes such as the separation of blood plasma protein fractions (5) and the stabilization of chelate complexes for different metals (6). A comparison of the dissociation of $H_2PO_4^-$ in water (7) and in different alcohol/water media (8, 9) is presented in Table II.

We are concerned with providing a variety of operational pH values for solutions in alcohol/water media. The hydrogen electrode behaves satisfactorily in alcohol + water solvents,

and a comparison of the emf obtained with that given by a glass electrode is often substantially uninpaired at solvent compositions below 90 mass % alcohols. A pH meter is also capable of giving reproducible emf values in alcohol/water solvents.

Experimental Section

The KH₂PO₄ and Na₂HPO₄ were NBS Standard Reference Materials 186 IC and 186 IIC; they were dried for 2 h at 120 °C. The 1-propanol was obtained from Aldrich Chemical Co., Inc. (spectral grade). Solvents were prepared by weighing the desired amount of double-distilled deionized water and adding the amount of 1-propanol to the desired mass percent composition. Then the calculated amount of KH₂PO₄, Na₂HPO₄, and NaCl was added to the desired concentration ranging from 0.1 to 0.001 ionic strength. Limited solubility in 50 mass % 1propanol precluded the measurements of phosphate/NaCl solutions, and many of the cells misbehaved as a consequence of precipitation or freezing below room temperature. But no difficulty was experienced in obtaining equilibrium values of the emf before freezing occurred.

The preparation of electrodes and other experimental details were the same as in earlier work (10). Cells displayed good stability and the final emf at 25 °C, obtained after the measurements descending to -10 °C, usually agreed with the initial values within 0.10 mV.

Results and Discussion

The cell used for the measurements can be represented by

Pt;Hg(g, 1 atm)|KH₂PO₄ (m),Na₂HPO₄ (m),NaCl (m)|AgCl;Ag

where m is molality. The observed data, corrected to a partial pressure of hydrogen of 1 atm (101.325 kPa) as described earlier (10), are listed in Table III.

The mathematical relationship between the measured emf (E), the standard emf (E°), and the thermodynamic second dissociation constant of H_3PO_4 (pK₂) value was formulated as follows:

$$pK_{2}' = pK_{2} - \beta I = \frac{(E - E^{\circ})F}{2.3026RT} + \log m + \frac{2AI^{1/2}}{1 + Ba^{\circ}I^{1/2}}$$

where I is the ionic strength (for $KH_2PO_4/Na_2HPO_4/NaCl(1:1:1)$, I is 5 m), and A and B are the constants of the Debye-Huckel theory, given in Table IV together with other physical constants of the mixed solvent needed for their evaluation. The ion-size parameters a^o, which gave a satisfactory linear extrapolation,

Table I. Standard Potential (E°) for the AgCl/Ag Electrode in the Cell Pt|H₂ (g, P = 101.325 kPa)|HCl (m) in Water + 20 and 50 Mass % 1-Propanol|AgCl/Ag

	E° at various T, V									
X, mass %	37 °C	25 °C	20 °C	15 °C	10 °C	5 °C	0 °C	−5 °C	-10 °C	
20 50	0.197 73 0.165 05	0.206 41 0.174 56	0.209 82 0.178 49	$\begin{array}{c} 0.21303 \\ 0.18218 \end{array}$	$\begin{array}{c} 0.21720 \\ 0.18210 \end{array}$	0.220 88 0.190 12	$\begin{array}{c} 0.22456 \\ 0.19404 \end{array}$	0.228 23 0.197 86	0.231 91 0.201 88	

Table II. Comparison of the Dissociation of $H_2PO_4^{-1}$ in Water and Different Alcohol/Water Media (7-9)

^{*a*} ϵ = dielectric constant of the solvent.

were in the range 4.2-5.1 Å, depending on temperature and solvent composition.

The pK_2 was determined by linear regression methods from the values of pK_2' for each solution studied. The results for pK_2 at different temperatures are summarized in Table V. The changes of pK_2 with temperature and solvent composition are shown in Figure 1.

As far as we are aware, there have been no previous attempts to provide reference solutions for the standardization of pH measurements in 1-propanol/water media at temperatures

Mass % 1- propanol-water

Figure 1. pK_2 values as a function of the mass percent of 1-propanol and water for the second dissociation constant of H_3PO_4 .

below 0 °C. The values given here should be useful. The conventional activity pH ($-\log a_{\mu}$) values for the chloride-free

Table III. Electromotive Force Values of the Cell Pt/Hg(g, $P = 101.325 \text{ kPa})|\text{H}_2\text{PO}_4^-(m)$ in Water + 20 and 50 Mass % 1-Propanol|AgCl/Ag

	emf value					
<i>Т</i> , К	I = 0.0075753	I = 0.014991	I = 0.019867	I = 0.022671	I = 0.024795	I = 0.028515
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		20 N	lass % 1-Propanol	AgCl/Ag		
310.15		0.805 81		0.794 70		0.789 01
298.15			0.78282	0.78484	0.77817	0.777 82
293.15			0.77913	0.78000	2.77195	0.771 42
288.15			0.77419	0.77045	0.76821	0.766 47
283.15			0.76873		0.76172	0.760 40
278.15			0.76302		0.75335	0.75414
273.15			0.75687		0.74825	
268.15			0.75516		0.742 19	
263.15	0.71773	0.75428	0.74209		0.74574	
310.15				0.78352	0.781 17	0.777 23
298.15			0.77328	0.77110	0.767 49	0.766 89
293.15		0.768 50	0.76780	0.76567	0.76362	
288.15				0.76025	0.757 91	0.756 55
283.15				0.75442	0.751 26	0.751 32
278.15	0.75899		0.75983	0.74819	0.73714	0.745 09
273.15	0.74774		0.74960	0.73976	0.73593	0.73984
268.15	0.74170		0.744 51	0.733 30	0.73254	0.734 24
263.15	0.735 55		0.741 41			0.72877
010 1		50 N	lass % 1-Propanol	AgCl/Ag		
310.15		0.81375		0.805 94		0.783 30
298.15		0.81066		0.790 40		
293.15		0.804 83		0.78526		
288.15		0.801 08		0.78026		
283.15		0.795 58		0.77466		
278.15		0.78930		0.76839		
273.15			0.77644	0.766 20		
268.15	0.78807	0.779184	0.77182	0.75750		
263.15	0.784 58		0.77422	0.75674	0.755 38	
310.15	0.77882	0.77291		0.76841	0.76845	0.760 36
298.15		0.76194	0.74842	0.75626	0.75684	0.751 46
293.15	0.761 82	0.757 31		0.75046	0.751 62	0.746 23
288.15	0.75680	0.75252		0.74501	0.74607	0.741 09
283.15	0.75181	0.747 64		0.73971	0.74071	0.737 04
278.15	0.74642	0.74264		0.734 46	0.73493	0.732 56
273.15		0.73513		0.72901		
268.15	0.73438	0.72869		0.72247		
263.15		0.72318				

Table IV.	Properties of	f l-Propano	l/Water	Solvents ^a
-----------	----------------------	-------------	---------	-----------------------

					<i>B</i> , kg
<i>T</i> , K	<i>E</i> °, V	$d, g m L^{-1}$	£	A, kg mol ⁻¹	mol ⁻¹ m ⁻¹
		20 Mass % 1	-Propano	l/Water	
310.15	0.9604	61.38	0.6809	0.35719	67.77
298.15	0.9672	64.89	0.6669	0.3555	32.60
293.15	0.9695	66.70	0.6571	0.3541	24.09
288.15	0.9720	68.39	0.6503	0.3531	17.38
283.15	0.9748	69.82	0.6482	0.3530	12.54
278.15	0.9775	71.39	0.6448	0.3528	9.04
273.15	0.9802	72.95	0.6423	0.3527	6.20
268.15	0.9828	74.51	0.6406	0.3527	4.45
263.15	0.9855	76.07	0.6396	0.3534	2.88
		50 Mass % 1	-Propano	l/Water	
310.15	0.8950	43.28	1.1106	0.4106	72.49
298.15	0.9029	46.13	1.0749	0.4074	35.64
293.15	0.9054	47.42	1.0595	0.4058	25.68
288.15	0.9089	48.67	1.0476	0.4055	18.50
283.15	0.9119	49.85	1.0392	0.4042	13.335
278.15	0.9151	51.06	1.0314	0.4036	9.609
273.15	0.9182	52.28	1.0247	0.4032	6.556
268.15	0.9213	53.49	1.0197	0.4030	4.723
263.15	0.9245	54.71	1.0158	0.4029	3.051

^a E° = potential at standard conditions; d = density; ϵ = dielectric constant; A and B are constants of the Debye-Huckel equation as a function of temperature (T).

Table V. Values of TpK_2 for the Second Dissociation Constants of H_3PO_4 in 0, 20, and 50 Mass % 1-Propanol/Water Solvents

		$T\mathbf{p}K_2$		
<i>Т</i> , К	0 mass %	20 mass %	50 mass %	
263.15		2013.7	2188.4	
268.15		2035.0	2214.8	
273.15	1997.6	2066.8	2248.8	
278.15	2025.4	2091.9	2275.3	
283.15	2053.9	2129.1	2315.2	
288.15	2083.7	2162.9	2351.6	
293.15	2114 .5	2197.8	2376.4	
298.15	2146.0	2227.6	2410.5	
303.15	2179.4			
308.15	2214.1			
310.15		2316.3	2465.8	
313.15	2248.7			
318.15	2284.6			
323.15	2321.2			
328.15	2358.4			
333.15	2386.8			

phosphate buffer can be calculated from the limiting value of the acidity function $p(a_H \gamma_{CI})$ by

$$p(a_{H}\gamma_{CI}) = \frac{E - E^{\circ}}{2.3026RT} + \log m_{CI}$$

At $m_{\rm Cl} = 0$

$$pa_{H} = p(a_{H}\gamma_{CI}) + \log \gamma_{CI}$$

and

$$pa_{H} = pK_{2} + \frac{3AI^{1/2}}{1 + a^{\circ}BI^{1/2}} + \beta I$$

The dissociation constants (pK_2) for the primary phosphate ion (H2PO4-) in pure water and 20 and 50 mass % 1propanol/water are summarized in Table VI.

Conclusions

A new group of buffers with pH ranging from 7.65 to 8.32 are reported here at temperatures below 0 °C. It will be

Table VI. Values of pK_2 for the Second Dissociation Constants of H₃PO₄ in Pure Water and 20 and 50 Mass % 1-Propanol/water Calculated by Using $TpK_2 = A + BT +$ CT^2 Equations

	$\mathbf{p}K_2$				
<i>Т</i> , К	pure water	20 mass % 1-propanol/water	50 mass % 1-propanol/water		
263.15		7.65 ± 0.09	8.32 ± 0.04		
268.15		7.59 ± 0.07	8.26 ± 0.01		
273.17	7.3131	7.57 ± 0.07	8.23 ± 0.04		
278.15	7.2817	7.52 ± 0.06	8.18 ± 0.02		
283.15	7.2537	7.52 ± 0.02	8.18 ± 0.02		
288.15	7.2312	7.51 ± 0.02	8.16 ± 0.03		
293.15	7.2130	7.50 ± 0.03	8.11 ± 0.03		
298.15	7.1976	7.47 ± 0.03	8.08 ± 0.03		
303.15	7.18 9				
308.15	7.185				
310.15		7.47 ± 0.02	7.95 ± 0.07		
313.15	7.180				
318.15	7.180				
323.15	7.183				
328.15	7.187				
333.15	7.194				

possible to buffer solutions at -5 and -10 °C with 1:1 phosphate buffer ratios and still be sure to be near the physiological pH.

Acknowledgment

We thank Angel L. Kaifer for his comments on the manuscript.

Glossary

А,В	Debye-Huckel constants
m	molality (mol/kg of solvent)
F	Faraday constant (96 487 C/mol)
Ε	potential (V)
E°	potential at standard conditions (V)
emf	electromotive force
R	gas constant
pK2'	second dissociation constant
Ι	ionic strength
eta	adjustable parameter
a°	ion-size parameter
ра _н	–log a _H
γ	activity coefficient
pK₂	thermodynamic second dissociation constant
$p(a_H \gamma_{CI})$	acidity function
mass %	mass percent

Literature Cited

- (1) Roy, R. N.; Vernon, W.; Bothwell, A. L. M. Electrochim. Acta 1973, 18, 81.
- (2) Roy, R. N.; Vernon, W.; Gibbons, J. J.; Bothwell, A. L. M. J. Chem. Thermodyn. 1971, 3, 883.
- (3) Gentile, P. S.; Eberle, L.; Cefola, M.; Cellano, A. V. J. Chem. Eng. Data 1963, 8, 420.
- (4) Elsemongy, M. M.; Fonda, A. S. J. Chem. Thermodyn. 1981, 13, 1123.
- (5) Cohn, E. J.; Gurd, F. R. N.; Surgenor, D. M.; Barnes, B. A.; Brown, R. K.; Deronaux, G.; Gillespie, J. M.; Kahnt, F. W.; Lever, W. F.; Liu, C. H.; Matelman, D.; Mouton, R. F.; Schmid, K.; Uroma, E. J. Am. Chem. Soc. 1950, 72, 465.
- (6) Dadgar, A.; De Lorenzo, R. J. Chem. Eng. Data 1970, 15, 298.
 (7) Bates, R. G.; Acree, S. F. J. Res. Natl. Bur. Stand. 1945, 34, 373.
 (8) Paabo, M.; Robinson, R. A.; Bates, R. G. J. Am. Chem. Soc. 1985, 83. 415.
- (9) Bates, R. G.; Bennetto, H. P.; Sankar, M. Anal. Chem. 1980, 52, 1598.
- Vega, C. A.; Butler, R. A.; Pérez, B.; Torres, C. J. Chem. Eng. Data 1985, 30, 376. (10)

Received for review June 26, 1989. Revised January 30, 1990. Accepted June 19, 1990.